Generic Global Rigidity in Complex and Pseudo-Euclidean Spaces
نویسندگان
چکیده
In this paper we study the property of generic global rigidity for frameworks of graphs embedded in d-dimensional complex space and in a d-dimensional pseudo-Euclidean space (R with a metric of indefinite signature). We show that a graph is generically globally rigid in Euclidean space iff it is generically globally rigid in a complex or pseudo-Euclidean space. We also establish that global rigidity is always a generic property of a graph in complex space, and give a sufficient condition for it to be a generic property in a pseudo-Euclidean space. Extensions to hyperbolic space are also discussed.
منابع مشابه
From the Lorentz Transformation Group in Pseudo-Euclidean Spaces to Bi-gyrogroups
The Lorentz transformation of order $(m=1,n)$, $ninNb$, is the well-known Lorentz transformation of special relativity theory. It is a transformation of time-space coordinates of the pseudo-Euclidean space $Rb^{m=1,n}$ of one time dimension and $n$ space dimensions ($n=3$ in physical applications). A Lorentz transformation without rotations is called a {it boost}. Commonly, the ...
متن کاملComplex Extensors and Lagrangian Submanifolds in Complex Euclidean Spaces
Lagrangian //-umbilical submanifolds are the "simplest" Lagrangian submanifolds next to totally geodesic ones in complex-space-forms. The class of Lagrangian //-umbilical submanifolds in complex Euclidean spaces includes Whitney's spheres and Lagrangian pseudo-spheres. For each submanifold M of Euclidean «-space and each unit speed curve F in the complex plane, we introduce the notion of the co...
متن کامل. D G ] 2 3 Ju l 1 99 8 Weierstrass representations for surfaces in 4 D spaces and their integrable deformations via DS hierarchy
Generalized Weierstrass representations for generic surfaces confor-mally immersed into four-dimensional Euclidean and pseudo-Euclidean spaces of different signatures are presented. Integrable deformations of surfaces in these spaces generated by the Davey-Stewartson hierarchy of integrable equations are proposed. Willmore functional of a surface is invariant under such deformations.
متن کاملBi-Gyrogroup: The Group-Like Structure Induced by Bi-Decomposition of Groups
The decomposition $Gamma=BH$ of a group $Gamma$ into a subset B and a subgroup $H$ of $Gamma$ induces, under general conditions, a group-like structure for B, known as a gyrogroup. The famous concrete realization of a gyrogroup, which motivated the emergence of gyrogroups into the mainstream, is the space of all relativistically admissible velocities along with a binary mbox{...
متن کاملClassification of Spherical Lagrangian Submanifolds in Complex Euclidean Spaces
An isometric immersion f : Mn → M̃n from a Riemannian nmanifold Mn into a Kähler n-manifold M̃n is called Lagrangian if the complex structure J of the ambient manifold M̃n interchanges each tangent space of Mn with the corresponding normal space. In this paper, we completely classify spherical Lagrangian submanifolds in complex Euclidean spaces. In this paper, we also provide two corresponding cla...
متن کامل